Aussagenlogik

In der Aussagenlogik versteht man unter einer Aussage einen sprachlichen oder formalen Ausdruck, dem man genau einen der beiden möglichen Wahrheitswerte (w. wahr, f. falsch) zuordnen kann.

Gesetze der Aussagenlogik		
Idempotenz		
1a) $A \wedge A \equiv A$	1b) $A \vee A \equiv A$	
Assoziat	ivgesetz	
2a) $(A \wedge B) \wedge C \equiv A \wedge (B \wedge C)$	2b) $(A \vee B) \vee C \equiv A \vee (B \vee C)$	
Kommuta	ativgesetz	
3a) $A \wedge B \equiv B \wedge A$	3b) $A \vee B \equiv B \vee A$	
Distribu	tivgesetz	
4a) $A \wedge (B \vee C) \equiv (A \wedge B) \vee (A \wedge C)$	4b) $A \vee (B \wedge C) \equiv (A \vee B) \wedge (A \vee C)$	
Identitä	tsgesetz	
5a) $A \wedge F \equiv F$	5b) $A \vee T \equiv T$	
$6a) A \wedge T \equiv A$	6b) $A \vee F \equiv A$	
Gesetz der dopp	elten Verneinung	
7) $\neg(\neg A) \equiv A$		
Komplemente		
8a) $A \land \neg A \equiv F$	8b) $A \vee \neg A \equiv T$	
9a) $\neg T \equiv F$	9b) $\neg F \equiv T$	
Gesetz von de Morgan		
10a) $\neg (A \land B) \equiv \neg A \lor \neg B$	$10b) \neg (A \lor B) \equiv \neg A \land \neg B$	

Konjunktion

Nur W - W ist wirklich wahr.

A	B	$A \wedge B$
w	w	w
w	f	f
\int	w	f
$\int f$	f	f

Disjunktion

Nur F - F ist wirklich falsch.

$oxed{A}$	B	$A \vee B$
w	w	w
w	f	w
\int	w	w
f	f	f

Antivalenz / XOR

Nur dann wahr, wenn nur eins von \$A \oplus B\$ richtig ist

Α	В	\$A \oplus B\$
W	W	F
W	F	W
F	W	W
F	F	F

Negation

$oxed{A}$	$\neg A$
w	f
f	w

Zusammengesetzte Aussagen:

lacksquare	B	$\neg B$	$A \wedge \neg B$	$\neg (A \land \neg B)$
w	w	f	f	w
w	f	w	w	f
f	w	f	f	w
f	f	w	f	w

Disjunktive Normalform

Wahrheitstabelle zu Aussage aufschlüsseln. Jede Teilaussage muss dabei wahr sein und kann dann mit den anderen Teilaussagen über eine Disjunktion verknüpft werden.

Kanonisch disjunktive Normalform

Jede Variable kommt genau einmal vor.

Tautologien

Wenn alle Werte der Aussage wahr sind, unabhängig von den Werten der Variablen.

A	$\neg A$	$A \vee \neg A$
w	f	w
f	w	w

Kontradiktionen

Wenn egal welcher Wert die Variablen haben, die Aussage immer Falsch ist.

A	$\neg A$	$A \wedge \neg A$
w	f	f
f	w	f

Logische Äquivalenz

Wenn zwei Aussagen die exakt gleiche Wahrheitstabelle haben. P(A, B, ...) \$\equiv\$ Q(A, B, ...)

Implikation

Ein Element verursacht ein anderes. Wenn A dann folgt B. ![[Pasted image 20231015132040.png]]

Zusammenhang

Wirkung zwischen Implikation, Umkehrung und Kontraposition.

		Implikation	Umkehrung	Kontraposition
A	B	$A \Rightarrow B$	$B \Rightarrow A$	$\neg B \Rightarrow \neg A$
\overline{w}	w	w	w	w
w	f	f	w	f
f	w	w	f	w
f	f	w	w	w

Äquivalenz

Gegenseitige Implikation der Inhalte.

lacksquare	B	$A \iff B$
w	w	w
w	f	f
f	w	f
f	f	w

Andere Schreibweise

$$A \iff B \equiv (A \Rightarrow |B) \land (B \Rightarrow A).$$

Aussageformen

Zahlenmenge

- Menge der natürlichen Zahlen: $\mathbb{N} := \{1, 2, 3, 4, \ldots\}$.
- Menge der ganzen Zahlen: $\mathbb{Z} := \{..., -3 2 1, 0, 1, 2, 3, ...\}$.
- Menge der rationalen Zahlen: $\mathbb{Q} := \{ \frac{p}{q} : p, q \in \mathbb{Z} \land q \neq 0 \}$.
- Menge der reellen Zahlen: \mathbb{R} .

Operanden

x $\pi = x$ \\in\$ \mathbb{R}\$ -> Definitionsbereich der Variable x. 3|n -> n ist ein Teiler von 3.

Quantoren

\$\forall\$ -> Allquantor für alle Elemente. \$\exists\$ -> Existiert mindestens ein Element.

Negation Existentaussage

 $x \in D: P(x) \neq x \in P(x)$ the proof of the p

Negation Allaussage

Beweistechniken

Indirekter Beweis

Implikation ist logisch äquivalent zu Kontraposition: \$A \implies B \equiv \Inot B \implies \Inot A\$ Manchmal einfacher zum Beweisen ist die Kontraposition.

Beweis durch Widerspruch

Hypothese: \$\Inot A \implies B\$

Ergibt einen Wirderspurch mit der wahren Aussage: \$\Inot A \implies \Inot B\$

Aussagenlogik vs Mengenlehre

Aussage: \$x \in A\$

Mengenangabe: \$A \cap B\$

Revision #4 Created 2023-10-25 06:34:07 UTC Updated 2024-07-21 15:11:16 UTC