
Use of simultaneous
processing using
PowerShell threads
If a long script has to perform many tasks, this can take a lot of time in PowerShell. As PowerShell
is not multithreaded by nature and processes are always executed sequentially, so-called threads
can be used to minimise the script length.

Example Code
This code serves as a template for the parallel execution of processes. The tricky part with threads
is the handling of input parameters and output values.

The script part is defined in the $Scriptblock variable. There you can work with arguments that are
passed to the thread. They can be used with the $args variable and the element number. Values
can be returned using the keyword "return".

$Scriptblock = {
 Start-Sleep 5
 return $args[0]
}

$MaxThreads = 10
$RunspacePool = [runspacefactory]::CreateRunspacePool(1, $MaxThreads)
$RunspacePool.Open()

$Jobs = @()
$InputObjects = @(
 "<yourinputobject1>",
 "<yourinputobject2>",
 "<yourinputobject3>",
 "<yourinputobject4>",
 "<yourinputobject5>"

)
$OutputObjects = @()

foreach ($Object in $InputObjects) {
 $Instance = [powershell]::Create()
 $Instance.RunspacePool = $RunspacePool
 $Instance.AddScript($ScriptBlock).AddArgument($Object) | Out-Null
 $Jobs += New-Object PSObject -Property @{
 Instance = $Instance
 State = $Instance.BeginInvoke()
 }

}
while ($Jobs.State.IsCompleted -contains $false) {
 Start-Sleep 1
}
foreach ($job in $jobs) {
 $OutputObjects += $job.Instance.EndInvoke($job.State)
}

$Instance.Dispose()

Revision #2
Created 18 January 2024 17:10:19
Updated 21 July 2024 15:11:16

