
PowerShell
Quick commands (Windows)
Check if script runs as admin
Scripting Guidelines
Authenticate to different host
Graph API Handling via PowerShell
Restructure JSON (object) into hashtable
Perform user interactions in the system context
Use of simultaneous processing using PowerShell threads

Quick commands
(Windows)
Nameresolution via other server than
default

Get Windows client join status

Get applied GPO status on Windows
client

Get RDS license status

Rejoin device to Microsoft Entra ID

nslookup somewhere.com some.dns.server

dsregcmd /status

gpresult /h C:\LocalData\GPResult.html

(Invoke-WmiMethod -PATH (gwmi -namespace root\cimv2\terminalservices -class
win32_terminalservicesetting).__PATH -name GetGracePeriodDays).daysleft

wmic /namespace:\\root\CIMV2\TerminalServices PATH Win32_TerminalServiceSetting WHERE (__CLASS !="")
CALL GetGracePeriodDays

Restart Computer to BIOS/UEFI

Delete specific files recursive

Run PowerShell as admin from
different session

Get last reboot time

Set error action in PowerShell session

Test network connection
Test TCP port

dsregcmd /forcerecovery

shutdown /r /fw

$source = "<sourcepath>"
$fileextension = "<filextension>"
get-childitem $source -include *$fileextension | foreach ($_) {remove-item $_.fullname}

Start-Process PowerShell -verb runas

Get-WmiObject win32_operatingsystem | select csname,
@{LABEL='LastBootUpTime';EXPRESSION={$_.ConverttoDateTime($_.lastbootuptime)}}

$erroractionpreference = "silentlycontinue"

Test-NetConnection -ComputerName <youripaddress> -Port <yourport>

Test UDP port

Check if address goes through proxy

This returns an object containing the information about the connection. If the "Host" property does
not contain the original requested URL, there is a setting on Windows present. This setting defines
the Proxy and the address of the proxy can be viewed in the "Host" property on the response
object of this command.

Manage Local Windows Groups
Add Microsoft Entra ID user to administrator group

Add Microsoft Entra ID user to remote desktop group

$ipaddress = "<youripaddress>"
$port = "<yourport>"
$connection = New-Object System.Net.Sockets.TcpClient($ipaddress, $port)
if ($connection.Connected) {
 Write-Host "Success"
} else {
 Write-Host "Failed"
}

$ipaddress = "<youripaddress>"
$port = "<yourport>"
$connection = New-Object System.Net.Sockets.UdpClient($ipaddress, $port)
if ($connection.Connected) {
 Write-Host "Success"
} else {
 Write-Host "Failed"
}

([System.Net.WebRequest]::GetSystemWebProxy()).getProxy("https://lucanoahcaprez.ch")

$Email = ""
Add-LocalGroupMember -SID "S-1-5-32-544" -Member "AzureAD\$EMail"

Open Windows Control Panel pages
Printer overview

Turn On/Off Windows Feature

Advanced System Properties

PowerShell Module Management
List installed modules

Manage Windows File System
Add System Hardlink

$Email = ""
Add-LocalGroupMember -SID "S-1-5-32-555" -Member "AzureAD\$EMail"

explorer shell:PrintersFolder

optionalfeatures

SystemPropertiesAdvanced

Get-InstalledModule

mklink /d <C:\MyLocalFolder> <X:\MyRemoteFolder>

Check if script runs as
admin
Check session for admin privileges
If you have to run your commands in your custom script as admin, it is essential for error handling
to check if the current session is admin.

Use case
This script can be used to combine with a Remote PowerShell Session to get local Configurations
from other Windows Servers or Clients, which only can be accessed via local admin privileges or
domain admin privileges.

More about this use case in docs entry "Authenticate to different host".

$isAdmin = (New-
Object Security.Principal.WindowsPrincipal $CurrentUser).IsInRole([Security.Principal.SecurityIdentifier] "S-1-5-
32-544")

if($isAdmin){
	Write-Output "PowerShell session is admin"	
}
if(!$isAdmin){
	Write-Output "PowerShell session is not admin"
}

Scripting Guidelines
Variable naming and notation
Variables are named in the PascalCase notation. Accordingly, the main activity of the script is
taken and the words are concatenated. In the description, the first letter of each word must be
capitalized:

I am doing something → IAmDoingSomething

The naming of the script should also be done in English.

Comments
Comments are important in PowerShell to recognize the context of the code and function bice.
Comments are started with "#" and then not executed in the code. Here it is important not to
describe what is done in detail, but why and what dependencies need to be considered. PowerShell
is an easy to read language and can therefore be reverse engineered very quickly, what the code
really does, accordingly explanations are not necessary and only lengthen the code unnecessarily.

Authenticate to different
host
Use case
This script block can be used in combination with an Azure Runbook. For example you can run a
PowerShell script on an Active Directory Domain Controller via an AD Joined Hybrid Worker. So, you
can use all the advantages of Azure Runbooks with the ability to automate the core of Active
Directory. In addition, an external source can dynamically check all AD DCs and scheduled tasks do
not have to be manually installed on all domain controllers for the same use case.

PowerShell Example
This code snippet can be used to authenticate to a host (Server) and use different credentials for
the connection. This script is specific to check if the user account in $ServiceAccountUPN has local
admin access on the host in $ServerName. To customize the code which will be executed on the
remote machine, you have to change the code inside the -ScriptBLock {<insertcustomcodehere>}.

$ServiceAccountUPN = ""
$ServiceAccountPW = ""
$ServerName = ""

$Password = ConvertTo-SecureString -AsPlainText $ServiceAccountPW -Force
$Credential = New-Object System.Management.Automation.PSCredential($ServiceAccountUPN, $Password)

$output = Invoke-Command -Credential $Credential -ComputerName "$ServerName" -ScriptBlock {
 $CurrentUser = [Security.Principal.WindowsIdentity]::GetCurrent()
 $isAdmin = (New-
Object Security.Principal.WindowsPrincipal $CurrentUser).IsInRole([Security.Principal.SecurityIdentifier] "S-1-5-
32-544")
 write-output "Output $($CurrentUser) ($($isAdmin))"
}

$output

Invoke-Command uses Windows Remote Management under the hood.

Windows Remote Management
Windows Remote Management (WinRM) uses the Port: 5986 over TCP. In the background is HTTPS
Protocol. WinRM is automatically installed with all currently supported versions of the Windows
operating system. The WinRM service starts automatically on Windows. By default, Internet
Connection Firewall (ICF) blocks access to ports.

Graph API Handling via
PowerShell

Graph API Authentication
First, the authentication header must be compiled in the script. With this header (here the variable
$Header) the authentication at the Graph API can be executed. The top three variables now contain
the values, which were compiled in an upper point.

Requirements: An App Registration with the appropriate permissions and a ClientSecret.

$TenantID = "<tenantid>"
$ClientId = "<cliendid>"
$ClientSecret = "<clientsecret>"

$Body = @{
"tenant" = $TenantId
"client_id" = $ClientId
"scope" = "https://graph.microsoft.com/.default"
"client_secret" = $ClientSecret
"grant_type" = "client_credentials"
}

$Params = @{
"Uri" = "https://login.microsoftonline.com/$TenantId/oauth2/v2.0/token"
"Method" = "Post"
"Body" = $Body
"ContentType" = "application/x-www-form-urlencoded"
}
$AuthResponse = Invoke-RestMethod @Params

$Header = @{
 "Authorization" = "Bearer $($AuthResponse.access_token)"

Graph API Resources - Getting
Information
This is a simple example query to get information. This only reads out. By the method "GET" this
can be recognized on the second line.

The following is the output from the $User variable, which has been populated in the top line with
information from the Graph API.

Graph API Resources - Create
information
In the following example, an entity is created via the Graph API in Intune. Here, the necessary
information is now also transmitted, using JSON Body.

}

$Email = "<youremailadress>"
$User = Invoke-RestMethod -Method GET -Uri "https://graph.microsoft.com/v1.0/users/$Email" -ContentType
"Application/Json" -Header $Header

@odata.context : https://graph.microsoft.com/v1.0/$metadata#users/$entity
businessPhones : <yourbusinessphones>
displayName : <yourdisplayname>
givenName : <yourforename>
jobTitle : <yourjobtitle>
mail : <youremailadress>
mobilePhone : <yourmobilephonenumber>
officeLocation : <yourofficelocation>
preferredLanguage : <yourpreferredlanguage>
surname : <yoursurname>
userPrincipalName : <yourupn>
id : <youruserid>

$KGTag = "TST"
$ScopeTagProdName = "SCT-INT-$KGTag-INTUNE-KGObjects-PROD"
$ScopeTagProdBody = @"

$global:ScopeTagProd is a global variable which has been populated with the return of the graph
query above. The content of the variable is as follows:

{
 "displayName":"$ScopeTagProdName",
 "description":"ScopeTag for Company $KGTag"
}
"@
$global:ScopeTagProd = Invoke-RestMethod -Method POST -Uri
"https://graph.microsoft.com/beta/deviceManagement/roleScopeTags" -ContentType "Application/Json" -Header
$Header -body $ScopeTagProdBody

id displayName 						 description isBuiltIn
-- ----------- 						 ----------- 		---------
45 SCT-INT-TST-INTUNE-KGObjects-PROD ScopeTag for Company TST False

Restructure JSON (object)
into hashtable
This script is needed if you get an object by any source (e.g., json) and you have to give every
member of the object as a value (keypair) into a hash table.

Use case

$bodyjson = @"
{
 "logtype": "testlogs2",
 "logbody": {
 "computername":"Device-123456",
 "user":"luca",
 "ouput":"registry key was set",
 "status":"success",
 "time":"xyz"
 }
}
"@

$bodyobject = ConvertFrom-Json $bodyjson
$logtype = $bodyobject.logtype
$logbodyobject = $bodyobject.logbody

$logbodyobjectmember = Get-Member -InputObject $logbodyobject | where {$_.Membertype -eq
"NoteProperty"}

$outputproperties = @{}

foreach ($item in $logbodyobjectmember.name){
 $outputproperties.add($item, $logbodyobject.$item)
}

To post data into a log analytics workspace you have to send a hash table as body of the post
request. If you build an API via Azure Functions then you get a JSON object as input. so you have to
restructure the incoming body to be a hash table. This has to be dynamic so the input length and
member entities can change.

Perform user interactions
in the system context
Usage of ServiceUI
ServiceUIx64.exe can be used to execute a certain part of a script in the user context, even though
you execute the main script in the system context.

Link collection
Use ServiceUI With Intune To Bring SYSTEM Process To Interactive Mode HTMD Blog
(anoopcnair.com)

How to display a custom window in SCCM Task Sequence using PowerShell | Slightly
Overcomplicated

ServiceUI.exe -process:TSProgressUI.exe %windir%\sysnative\WindowsPowerShell\v1.0\powershell.exe -
WindowStyle Hidden -NoProfile -ExecutionPolicy Bypass -nologo -File <scriptpath>

https://www.anoopcnair.com/use-serviceui-with-intune-to-bring-system-process-to-interactive-mode/
https://www.anoopcnair.com/use-serviceui-with-intune-to-bring-system-process-to-interactive-mode/
https://slightlyovercomplicated.com/2018/08/11/how-to-display-a-custom-window-in-sccm-task-sequence-using-powershell/
https://slightlyovercomplicated.com/2018/08/11/how-to-display-a-custom-window-in-sccm-task-sequence-using-powershell/

Use of simultaneous
processing using
PowerShell threads
If a long script has to perform many tasks, this can take a lot of time in PowerShell. As PowerShell
is not multithreaded by nature and processes are always executed sequentially, so-called threads
can be used to minimise the script length.

Example Code
This code serves as a template for the parallel execution of processes. The tricky part with threads
is the handling of input parameters and output values.

The script part is defined in the $Scriptblock variable. There you can work with arguments that are
passed to the thread. They can be used with the $args variable and the element number. Values
can be returned using the keyword "return".

$Scriptblock = {
 Start-Sleep 5
 return $args[0]
}

$MaxThreads = 10
$RunspacePool = [runspacefactory]::CreateRunspacePool(1, $MaxThreads)
$RunspacePool.Open()

$Jobs = @()
$InputObjects = @(
 "<yourinputobject1>",
 "<yourinputobject2>",
 "<yourinputobject3>",
 "<yourinputobject4>",
 "<yourinputobject5>"

)
$OutputObjects = @()

foreach ($Object in $InputObjects) {
 $Instance = [powershell]::Create()
 $Instance.RunspacePool = $RunspacePool
 $Instance.AddScript($ScriptBlock).AddArgument($Object) | Out-Null
 $Jobs += New-Object PSObject -Property @{
 Instance = $Instance
 State = $Instance.BeginInvoke()
 }

}
while ($Jobs.State.IsCompleted -contains $false) {
 Start-Sleep 1
}
foreach ($job in $jobs) {
 $OutputObjects += $job.Instance.EndInvoke($job.State)
}

$Instance.Dispose()

