
Pipelines
Upload files automatically to SFTP server
Build and deploy node.js app automatically using CI/CD

Upload files
automatically to SFTP
server

This article describes how to automatically upload files to an (S)FTP server. We will create a
pipeline in the Gitlab project that runs on a runner and uploads the files. The intended use could be
to publish a static website on a web server or to keep information on the Internet up to date.

We will use an (S)FTP Linux client for the upload, which is executed on the command line.

Store credentials as a variable
To ensure that the credentials for your (S)FTP server can be managed centrally and are not stored
as plain text in your repo, it is strongly recommended to use the variable function. To do this,
variables can be created in the project or at group level, which can then be used in the pipeline
using $VARIABLE.

Go to your group or project in your Gitlab instance or in the cloud. You can choose Settings ->
CI/CD to open the variable secion.

Prerequisite: A Gitlab Runner must be available in the project or group. You also need to
know the information on how access to your (S)FTP server.

https://docs.lucanoahcaprez.ch/uploads/images/gallery/2023-12/l68image.png

You can then enter your access data under "Variables". Make sure you use the correct name in the
code. For credential data, it is recommended to deactivate the "Protected" setting and to
active"Expand".

In the same view, you can check that a Gitlab Runner is available for the project or group. The view
should look like this:

Create pipeline
In the project that you want to upload to the server, you must create a .gitlab-ci.yml file. You can
then copy the following code into it.

image: ubuntu:22.04

stages:
 - before_script

https://docs.lucanoahcaprez.ch/uploads/images/gallery/2023-12/asPimage.png
https://docs.lucanoahcaprez.ch/uploads/images/gallery/2023-12/0t8image.png

Make sure that you set the target path correctly and you may want to add other parameters so
that it works with your FTP setup. If you have created the file correctly, you can commit the code to
your GIT repo and push it to the Gitlab remote repository. The code is then executed and your repo
files are uploaded to the (S)FTP server.

The Pipeline now only executes this configuration if it is pushed into the Master or Main branch.
However, you can change this relatively quickly by removing the code block.

 - deploy

before_script:
 - apt update -qy
 - apt install -y lftp

deploy:
 stage: deploy
 script:
 - lftp -e "set ssl:verify-certificate no; open $FTP_HOSTNAME; user $FTP_USERNAME $FTP_PASSWORD; mirror -
X .* -X .*/ --reverse --verbose --delete . ./<yourdestinationfolder>; bye"
 only:
 - master
 - main

Build and deploy node.js
app automatically using
CI/CD

This guide enables automation in the build and deployment process. Tested frameworks with this
solution are: SvelteKit, Express.JS, Next.JS.

Use case
If a node.js application has regular feature updates or bug fixes, it can be tedious to deploy them
manually.
Here you can find an example pipeline of how building and deploying the website using Docker
containers could work.
However, if you only want to upload the files to your web server via (S)FTP, you can combine this
guide and the following one: Upload files automatic... | LNC DOCS (lucanoahcaprez.ch)

Architecture
The building and deploying steps should be possible via a pipeline. First, a container is created via
the Gitlab Runner, which builds the code. This container is then finalized and uploaded to a
registry.

Once the Docker image has arrived in the registry, the building container is destroyed. The next
step is then to use docker-compose and the corresponding image that we created previously on
the production server.

Pipeline

Prerequisites: A Gitlab Runner must be available in the project or group. Your code must be
in the repo on Gitlab instance or cloud.

https://docs.lucanoahcaprez.ch/books/pipelines/page/upload-files-automatically-to-sftp-server

The following code could be an example pipeline that first builds and containerizes the application
and then deploys it using docker-compose. Save the following code as a ".gitlab-ci.yml" document
in the main level of your GIT project.

Note that you need to specify the Docker hosts for the build process and for the production release.
In addition, you must provide the following variables correctly in the project or in the group.

$REGISTRY_URL
$REGISTRY_USERNAME
$REGISTRY_PASSWORD

More on Gitlabs CI/CD variables can be found here: Upload files automatic... | LNC DOCS
(lucanoahcaprez.ch)

stages:
 - containerize
 - deploy

containerize:
 variables:
 DOCKER_HOST: tcp://<yourdockerbuildmachine>:2375
 image: docker
 stage: containerize
 services:
 - docker:dind
 script:
 - apk add --update nodejs npm
 - npm i
 - npm run build
 - docker build -t $REGISTRY_URL/<yourprojectname> .
 - echo $REGISTRY_PASSWORD | docker login https://$REGISTRY_URL -u $REGISTRY_USERNAME --password-
stdin
 - docker push $REGISTRY_URL/<yourprojectname>
 - ls -la .
 only:
 - master
 - main

deploy:
 variables:
 DOCKER_HOST: tcp://<yourdockerhostingmachine>:2375

https://docs.lucanoahcaprez.ch/books/pipelines/page/upload-files-automatically-to-sftp-server
https://docs.lucanoahcaprez.ch/books/pipelines/page/upload-files-automatically-to-sftp-server

Deployment configuration
Save these files in addition to the .gitlab-ci.yml configuration at the top level.

docker-compose.yml
When publishing, docker-compose uses a configuration file. This must be located in the top
directory of the GIT repo. This configuration can be extended as required and only serves as a basis
for publishing.

Dockerfile
The last file that is required is the Dockerfile. This file tells the build process what the docker
container should ultimately look like. Here is a generic Dockerfile that builds a node app and makes
it available on port 3000.

 image: docker
 stage: deploy
 script:
 - docker-compose up -d
 only:
 - master
 - main

version: '3'
services:
 node:
 image: '<yourregistryurl>/<yourprojectname>:latest'
 container_name: <yourprefereddockername>
 restart: unless-stopped
 ports:
 - '<hostport>:3000'

FROM node:18-alpine

RUN mkdir -p /usr/app/
WORKDIR /usr/app/

COPY ./ ./

RUN npm install
RUN npm run build

EXPOSE 3000
CMD ["node", "build/index.js"]

