
GIT
Installation and configuration of GIT
Enterprise workplace GIT structure



Installation and
configuration of GIT
To get started with GIT, first install Visual Studio Code (VS Code) and GIT on your computer. After
installation, configure GIT with your name and email address. These steps are documented here.

Install VS Code
Install VS Code on your computer. Here is a winget command for Windows.

You can also download it on the official page for other platforms:

Download Visual Studio Code - Mac, Linux, Windows

Install GIT
Install GIT on your computer (Command for Windows only):

For other platforms use this download links.

Git - Downloads (git-scm.com)

Configure GIT
Configure GIT on first startup:

1. Name and email: Open your terminal or GIT bash (if using Windows) and configure GIT by
providing your name and email address. This helps GIT to identify you as the author of the
changes:

winget install -e --id Microsoft.VisualStudioCode

winget install -e --id Git.Git

https://code.visualstudio.com/download
https://git-scm.com/downloads


2. Texteditor (optional): If you want, you can select your preferred text editor for GIT. For
example, to set Visual Studio Code as the default editor.

 

git config --global user.name "<yourdisplayName>"
git config --global user.email "<yourEmailAdress>"

git config --global core.editor "code --wait"



Enterprise workplace GIT
structure
In this concept, we establish a central repository for PowerShell scripts to encourage collaboration
and active work on scripts. We rely on the following elements:

1. Central repository for PowerShell Scripts: We set up a central repository where all
PowerShell scripts are stored. This helps to organize and unify script management.

2. Active work in the repository: All team members actively work in the central
repository. This means that all changes to PowerShell scripts can be tracked, documented
and monitored in this repository.

3. VSCode as a coding environment: Visual Studio Code (VSCode) can be used as an
Integrated Development Environment (IDE) to develop and edit the PowerShell scripts.
VSCode provides a wide range of extensions and features that facilitate the development
and debugging of PowerShell Scripts. This concept only considers working with VSCode as
a text editor.

4. Shared repository: The central repository is accessible to the entire team. Here, all
team members can access the latest versions of the scripts, submit changes, and track
the history of the scripts.

5. Personal repositories (e.g., powershell-luca): In addition to the shared repository,
team members have the ability to create personal repositories to work on specific tasks or
scripts that are not yet ready for the main repository. These personal repositories can
later be integrated into the main repository once the work has been completed and
reviewed. Own scripts created during working time should also be stored there, so that
synergies can be used more often.

Overall, this concept aims to create an efficient and collaborative development environment for
PowerShell scripts by providing a clear structure for management and collaboration while
maintaining flexibility for individual work.

Folder structure
powershell-<teamname>: Under "powershell-<teamname>" PowerShell scripts are centrally
managed, access is available to all members. Technology distinction: For technologies not related
to PowerShell (e.g., C#), create separate repositories to ensure clear separation. The subfolders of
the shared repository are differentiated by technology.

powershell-<username>: Here we organize personal PowerShell scripts. All scripts and
programs created during working hours are placed here and also actively worked on. This



repository is also accessible to all team members.

Permissions for all project members: Permissions are designed so that all members of the
DevOps project can access all repositories.

Leaving team members: Even after members leave the organisation, the repositories remain
intact. However, productive and shared scripts are moved to the central "powershell-wps"
repository to be available quicker to all.

Naming concept personal repository
Here is clarity in the folder structure of a GIT repositories.

The naming is as follows:
<programming language>-<name>

For example:
powershell-luca


