
Create Runbook Job via
Webhook and Azure
Management API
To create a Runbook Job you can use the Azure Management API in combination with the webhook
feature from Azure Runbooks. This makes sure that you can execute a script with given parameters
in a safe location (credential handling, reliability, on premise access and more).

Use case
To use the runbook to execute PowerShell code on a backend, you can create a Job from the client
code with corresponding input values. Even if you want to get some information back from the
Runbook, you can wait on the client side code for the response of the Runbook Job.

Example: Based on a UPN of a logged in user the language of his device should be set. In order to
match the UPN in the database and get a predefined language, an Azure Runbook should be called
by the client and return the language. This ensures that the credentials and network access to the
database are stored securely.

Create webhook URL
To create a webhook you have to open the Runbook and go to "Webhooks":

There you can create a new webhook and enter the name of the webhook, expiration date and you
can view the URL. In addition, you can specify here where the runbook should be executed,
whether in Azure itself or on a Hybrid Worker.

Attention: The URL is shown only once and should therefore be copied out.

Authentication to Azure Management
API
The authorization against the Azure Management API can be solved via an app registration. For this
you have to create an App Registration with the following permission:

Delegated: user_impersonation

This permission can be added through the "Azure Service Management":

https://docs.lucanoahcaprez.ch/uploads/images/gallery/2022-12/psaimage.png
https://docs.lucanoahcaprez.ch/uploads/images/gallery/2022-12/Md6image.png
https://docs.lucanoahcaprez.ch/uploads/images/gallery/2022-12/R7Kimage.png

After that you have to use the access control blade of your Automation Account. There you have to
grant the "Automation Job Operator" role to the App Registration. This process needs at least the
"Application Administrator" role.

Then you can use the same header as for the Graph API as documented here: Create access token
| LNC Docs (lucanoahcaprez.ch)

Get Webhook data from request body
To get the data of the requests body you first have to define a new parameter at the beginning of
the Runbook script. Below you can filter out the body from the request and convert it from JSON to
a PowerShell object. This can then be stored in normal variables or simply used for the further
course of the script.

Create Runbook Job via PowerShell
To create a Runbook Job you have to first use the Webhook feature. Then for getting the Jobs
output, you have to wait until the Runbook is with the state "Succeeded".

Param(
 [parameter (Mandatory=$false)]
 [object]$WebhookData
)
$WebhookBody = $WebHookData.RequestBody
$InputData = (ConvertFrom-Json -InputObject $WebhookBody)

$LanguageCode = $InputData.LanguageCode
$DomainName = $InputData.DomainName

Create Runbook Job
$webhookurl = "<yourwebhookurl>"
$Body = @"
{
 "email":"$Email"
}
"@
$JobId = Invoke-RestMethod -Method POST -Uri $webhookurl -Body $Body
$JobId = $JobId.JobIds

https://docs.lucanoahcaprez.ch/books/microsoft-graph-api/page/create-application-access-token-authorization-header
https://docs.lucanoahcaprez.ch/books/microsoft-graph-api/page/create-application-access-token-authorization-header

Create loop from csv content
With the following script you can loop over content inside a csv and create a new Runbook job for
every entry.

Get Runbook job output via
PowerShell
Here you can get the Runbook job output by a job id:

$Imports = Import-Csv -Path "<pathtocsv>" -Delimiter ";"
$webhookurl = "<yourwebhookurl>"

foreach($Import in $Imports){
 # Create Runbook Job
 $Body = @"
 {
 "languagecode":"$($Import.LanguageCode)",
 "domainname":"$($Import.DomainName)",
 }
"@

 Invoke-RestMethod -Method POST -Uri $webhookurl -Body $Body
}

$subscriptionid = "<yoursubscriptionid>"
$resourcegroupname = "<yourresourcegroupname>"
$automationaccountname = "<yourautomationaccountname>"

$JobId = "<yourrunbookjobid>"

$whilecounter = 1

Get Runbook job output
$url =
"https://management.azure.com/subscriptions/$Subscriptionid/resourceGroups/$resourcegroupname/providers/
Microsoft.Automation/automationAccounts/$automationaccountname/jobs/$JobId/?api-version=2019-06-01"
$Response = Invoke-Restmethod -uri $url -Method GET -Headers $Headers

print out current state of Runbook Job
$response.properties.provisioningstate
while($response.properties.provisioningstate -ne "Succeeded"){
 Start-Sleep 15
 $Response = Invoke-Restmethod -uri $url -Method GET -Headers $Headers
 $response.properties.provisioningstate
 if($whilecounter -le 10){
 $whilecounter ++
 }
 else{
 Write-Error "Get job output from Runbook failed. Exiting Script."
 Exit 1
 }
}

$RunbookJobOutput = Invoke-Restmethod -uri $url -Method GET -Headers $Headers

Revision #9
Created 9 December 2022 14:54:07
Updated 21 July 2024 15:11:16

