Azure Runbooks

e How to Runbook
e Runbook concept with PowerShell

e Create Runbook Job via Webhook and Azure Management API

How to Runbook

This guide is a quick manual for an Azure Runbook. Here is a brief description of the prerequisites
and definitions that must be met in order to create an automation via Azure Runbooks.

Prerequisites

Defined goal

A defined goal is necessary that we can check if our end product is doing what we are expecting.
This can be as simple as one phrase.

Example:

My Azure Runbook should start by a manual trigger and create a new enrollment service profile via
Graph APl in Intune. As a result, it should return a success-code and the name and id of the new
enrollment service profile.

Defined input

To know how to start the code, we first need to define the input(s) we need to get with the trigger
to reach our goal. This must be a static text input.

Example:
Variable 1: $ServiceProfileName = <textinput>

Variable 2: $Groupld = <idinput>
Variable 3: $CompanyName = <companyname>

Defined output

The output should include the name and the id of the created enroliment service profile and if the
script was run successful.

Example:
ESP-WIN-LNC-DEVICE-CompanyEnroliment-PROD // 396e26cb-d657-4a4e-8beb-105bal984c63

Script finished successfully

Trigger method

The method is important that we know what oder which object(s) are triggering this runbook. This
could be a manual user via the Azure Portal or via the Azure Management API. Furthermore, it
could be a third-party system, like ServiceNow or a schedule.

Example:

This Azure Runbook should get triggered manually via the Azure Portal.

Logic model

The logic model defines the logic of the code in a very high-level draft.
Example:

Get Input

Check input values

Create JSON body for Graph API
Post JSON body to Graph API
Get response from Graph API
Write response in output

ok wNH

Decisions

Coding language

Azure Runbooks can execute different code with different languages. This is defined per Azure
Runbook. To change the Runbooks coding language, you can create a new Runbook in the
Automation Account. Azure Runbooks offers these languages for code execution:

e PowerShell
e Python

Runtime

On which environment should the Runbook run on? You can choose between Azure managed hosts
or hybrid worker. Hybrid worker brings the advantage that you can connect to on premise
resources and bypass some restrictions which can occur if Azure is selected as runtime.

Procedure

Create Automation Account

Automation Accounts are the container which contains all the information, secret, Runbook and
more. You can create one Automation Account for all your Runbooks. However, it is a good idea if
the automation accounts are subdivided according to the technologies that will be automated.

Create runbook

The runbook contains the code which will be executed. On creation you have to select which type it
should create. This is a selection of the mentioned coding languages.

E’i Create a runbook

Name * @O ‘ Enter the runbook name... ‘

Runbook type * O | Select the runbook type v |

Select the type of runbook you want to create:

* PowerShell runbooks are text runbooks based on PowerShell.

¢ Graphical runbooks are based on Windows PowerShell and are created and edited
completely in the Automation graphical editor.

¢ Python runbooks are text runbooks based on Python scripts targeting the Python
interpreter.

* PowerShell Workflow runbooks are text runbooks based on Windows PowerShell
Workflow.

¢ Graphical PowerShell Workflow runbooks are based on Windows PowerShell
Workflow and are created and edited completely in the Automation graphical editor.
Runbooks of this type can be migrated to Graphical runbooks.

Code

When created you can copy your code into the web editor of the Function or start to develop the
code directly in the Azure Portal.

Testing

For testing you don't have to leave the Azure Portal. While developing you are able to activate the
"Test pane". There you can enter the variables if parameters are defined on the top level in the
code.

['Eﬂ Save & Publish X Revert to published @ Test pane ,é\j Feedback

> BA CMDLETS 1 $CredentialObject=Get-AutomationPSCredential -Name 'CRED-RB-ALL-CRED-DCDiag-PROD-WE'
2 # $Password = $CredentialObject.GetNetworkcredential().password
> ;‘; RUNBOOKS 3 $Username = $CredentialObject.GetNetworkcredential().username
a
ASSETS
> & 5 $Username
param (

[Parameter (Mandatory = $true)]

https://docs.lucanoahcaprez.ch/uploads/images/gallery/2022-12/w5Aimage.png
https://docs.lucanoahcaprez.ch/uploads/images/gallery/2022-12/qRpimage.png

[object] $Email,
[Parameter (Mandatory = $true)]

[object] $deviceName

[> start fc View last test

Parameters
EMAIL * © Click 'Start’ to begin the test run.
Streams will display when the test completes.

‘ Enter a value

Mandatory, Object

DEVICENAME * ©

Enter a value

Mandatory, Object

Run Settings
Runon ©

‘ Hybrid Worker)

Activity-level tracing

This configuration is available only for
graphical runbooks.

Trace level

This is the result view in the Azure Portal if parameters are defined in the code.

Deploy

To deploy the code you have to publish the code in the editor view.

@7 Publish| X Revert to published @ Test pane F{j Feedback

After that you are able to start the Runbook via the normal Azure Runbook GUI. This will then use
the latest published version of the code.

> start [</> View 7 Edit (U Linktoschedule [&' Add webhook [i] Delete & Export () Refresh

Things to consider

Hybrid worker

To use a hybrid worker, you have to deploy an Azure VM, or an Azure Arc enabled VM which is
always online. This means that the costs are not very low to use on prem scripts via Azure
Runbooks.

Stacking of requests

https://docs.lucanoahcaprez.ch/uploads/images/gallery/2022-12/SHximage.png
https://docs.lucanoahcaprez.ch/uploads/images/gallery/2022-12/6gQimage.png
https://docs.lucanoahcaprez.ch/uploads/images/gallery/2022-12/076image.png

Azure Runbook stacks the requests. So, if 100 requests are made, the code execution is
asynchronous, and you have to wait until all jobs (requests) were processed.

Runbook concept with
PowerShell

Here | describe how to create automations using runbooks. The PowerShell scripts can either run in
the Azure environment or on the hybrid workers, which are joined in a domain and can thus access
internal resources. The file structure and all resources are displayed and edited via the Azure
portal.

Runbooks are executed asynchronously. This means that the first execution is completely finished
until the next request is processed (big difference to Azure Functions!). This also means that
several executions are stacked (queued) and only one execution is possible in parallel at a time.

Runbooks

In Azure Automation Accounts, runbooks are the PowerShell scripts that are executed regularly, on
user action or via third party applications. These are created in the corresponding automation
account according to the technology. These runbooks can then be equipped with other resources
such as schedules or credentials.

The runbooks should be named according to the abbreviation corresponding to the environment
(AD, MEID, CPC, MW, SPO, EXO, TEA, etc.) and the abbreviation "RB". In addition, a short name that
is as meaningful as possible should be used for the action of the script.

Example:

e RB-EXO-PRD-PS1-CreateDomainByCompany-PROD-WE
e RB-MEID-ALL-PS1-CleanUpMEIDDevices-PROD-WE

Automation Credentials

App Registrations and Service Accounts Credentials can be stored in the Automation Credentials.
These are to be stored according to the following concept. Usernames and passwords, but also
Secret ID and Client Secrets can be stored here. It is also important here that the corresponding
resource names (account name, app registration name) are contained one-to-one.

Example:

o CRED-RB-PRD-CRED-CleanUpMEIDDevices-PROD-WE
o CRED-RB-ALL-CRED-CleanUpMEIDDevices-PROD-WE

Access in the PowerShell script to the corresponding
variables

$CredentialObject=Get-AutomationPSCredential -Name 'CRED-RB-ALL-CRED-CleanUpMEIDDevices-PROD-WE'

$Password = $CredentialObject.GetNetworkcredential().password

$Username = $CredentialObject.GetNetworkcredential().username

Certificates

The certificate storage of Azure Runbooks can be used so that authentication can also be
performed using certificates.
Example:

e CERT-RB-PRD-CERT-CleanUpMEIDDevices-PROD-WE
e CERT-RB-ALL-CERT-CleanUpMEIDDevices-PROD-WE

Variables

Under variables, contents and strings can be stored that simply have to be adapted or should not
be hardcoded in the script.
Example:

e VAR-RB-PRD-CLIENTID-CleanUpMEIDDevices-PROD-WE
e VAR-RB-ALL-CLIENTID-CleanUpMEIDDevices-PROD-WE

Access in the PowerShell script to the corresponding
variables

$Clientld=Get-AutomationVariable -Name "VAR-RB-PRD-CLIENTID-CleanUpMEIDDevices-PROD-WE"

PowerShell Modules

In order to use PowerShell modules, they must first be added to the Azure Automation account.
This can be achieved in the Automation Account via "Modules" - "Add a Module" - "Browse from
Gallery".

Import module into PowerShell script

Import-Module AzureAD

Schedules

The schedules are finally mapped to the runbook. These can be set granularly on a weekly, daily or
hourly basis. The following concept is also used in the schedule name. In addition to the action
name, the abbreviation "RB" for runbook is added here. In addition, there is one of the following
regularity descriptions:

Hourly
Daily
Weekly
Monthly
Yearly
12Hourly

Example:

e SCED-RB-PRD-DAILY-CheckLicenseCount-PROD-WE
e SCED-RB-PRD-WEEKLY-CleanUpMEIDDevices-PROD-WE

Triggers

Triggers mean types to call the Azure Runbooks and execute the code.

Manual

Azure Runbooks can be conveniently executed via the GUI. The required parameters can also be
entered in the GUI Form.

Home > Automation Accounts > Runbooks > Start RunbOOk ba X
> =R DR 0 8 5" (intune-automation/RB_MW_C

Runbook
unbeo Parameters
|/"31- Search | « [> start <> View & Edit (O Linktoschedule [E} Addwebhook SHORTNAME * @
R | Enter a value
& Overview - Essentials
Activity log Resource group Subscription ~ Mandatory, Object
@ Tags Account Status LANGUAGECODE * @
ﬁ Diagnose and solve problems Published Enter a value
Location Runbook typ
Resources West Europe PowerShell Mandatory. Object
Jobs Subscription El;ntime Vers
) ’ DOMAINNAME * ©
(@ Schedules Last modifiec

Enter a value

11/4/2022, 2:
B! Webhooks

Tags (edit) Mandatory, Object

Runbook settings

= n fntine

Schedules

Schedules can be defined in the Automation Account. This allows scripts to be run on a regular
basis. These schedules can then be assigned to the runbooks. To remain transparent, only one
schedule per runbook and one runbook per schedule may be used.

PowerShell

A runbook can also be executed via PowerShell. However, a webhook must be created for this, via
which a runbook job can be created. Since runbooks do not automatically return the response and
can take several hours to execute, the PowerShell script must also wait for the output. Here we see
an example where a PowerShell script waits 165 seconds for the job output and terminates
otherwise.

Create AzRUN Job
$url = "<yourrunbookwebhookurl>"
$Body = @"
{
"email":"$Email"
}
'@
$Jobld = Invoke-RestMethod -Method POST -Uri $url -Body $Body
$Jobld = $Jobld.Joblds

$whilecounter = 1

https://docs.lucanoahcaprez.ch/uploads/images/gallery/2022-12/2LXimage.png

Get AzRUN Job Output
$url =
"https://management.azure.com/subscriptions/<subscriptionid>/resourceGroups/<resourcegroupname>/provide
rs/Microsoft.Automation/automationAccounts/<automationaccountname>>/jobs/$Jobld/?api-version=2019-06-
01"
$Response = Invoke-Restmethod -uri $url -Method GET -Headers $Headers
$response.properties.provisioningstate
while($response.properties.provisioningstate -ne "Succeeded"){
Start-Sleep 15
$Response = Invoke-Restmethod -uri $url -Method GET -Headers $Headers
$response.properties.provisioningstate
if($whilecounter -le 10){
$whilecounter ++
}
else{
Write-Error "Get JobOutput from Runbook failed. Exiting Script."
Exit 1

$outputurl =
"https://management.azure.com/subscriptions/<subscriptionid>/resourceGroups/<resourcegroupname=>/provide
rs/Microsoft.Automation/automationAccounts/<automationaccountname>>/jobs/$Jobld/output?api-
version=2019-06-01"

$Language = Invoke-Restmethod -uri $outputurl -Method GET -Headers $Headers

ServiceNow

ServiceNow has a spoke for interaction with Azure Automation accounts and can use it to execute
runbooks and read out their feedback. SNOW receives authorisation for access via a service
account. This account must be able to read all resource groups on the subscription and have the
rights to execute runbooks on the automation account.

Authentication to Azure Automation Account

Authentication to the Azure Automation Account happens in exactly the same way in the frontend
as well as via code. Here, the app registration must have the permission "user_impersonation" on
the Azure API. Then all requests go via the API https://management.azure.com. Accordingly, the
app registration must also be authorised in the IAM of the Azure Automation Account by means of
Managed Identity.

Create Runbook Job via
Webhook and Azure
Management API

To create a Runbook Job you can use the Azure Management APl in combination with the webhook
feature from Azure Runbooks. This makes sure that you can execute a script with given parameters
in a safe location (credential handling, reliability, on premise access and more).

Use case

To use the runbook to execute PowerShell code on a backend, you can create a Job from the client
code with corresponding input values. Even if you want to get some information back from the
Runbook, you can wait on the client side code for the response of the Runbook Job.

Example: Based on a UPN of a logged in user the language of his device should be set. In order to
match the UPN in the database and get a predefined language, an Azure Runbook should be called

by the client and return the language. This ensures that the credentials and network access to the
database are stored securely.

Create webhook URL

To create a webhook you have to open the Runbook and go to "Webhooks":

D RB-TST-LNC-PS1-DocsTests-NONPROD-WE |

= Runbook

« D b ver 2

2 G A Essentials

& Activity log Resource gro... : rg-bkw-intune-prod-we

0 Tags Account intune-automation
Location West Europe

& Diagnose and solve problems
Subscription sub-bkw-shared-prod-w:

Resources

£ Jobs Tags (edit) : CostCenter : 4-10-0008

@® Schedules

2] Webhooks

Runbook settings

Recent Jobs

Status
11! Properties

No jobs found
= Description

@ Logging and tracing

Settings
B Locks

Automation
2. Tasks (preview)

Z Export template

Support + troubleshooting

New Support Request
PP q

There you can create a new webhook and enter the name of the webhook, expiration date and you
can view the URL. In addition, you can specify here where the runbook should be executed,
whether in Azure itself or on a Hybrid Worker.

Attention: The URL is shown only once and should therefore be copied out.

Authentication to Azure Management
API

The authorization against the Azure Management API can be solved via an app registration. For this
you have to create an App Registration with the following permission:

Delegated: user_impersonation

—+ Add a permission ~ Grant admin consent fo

API / Permissions name Type Description Admin consent requ... Status
v Azure Service Management (1) s
user_impersonation Delegated Access Azure Service Management as organization users No @ Granted for e

This permission can be added through the "Azure Service Management":

IA Azure Service Management

Programmatic access to much of the
functionality available through
the Azure portal

https://docs.lucanoahcaprez.ch/uploads/images/gallery/2022-12/psaimage.png
https://docs.lucanoahcaprez.ch/uploads/images/gallery/2022-12/Md6image.png
https://docs.lucanoahcaprez.ch/uploads/images/gallery/2022-12/R7Kimage.png

After that you have to use the access control blade of your Automation Account. There you have to
grant the "Automation Job Operator"” role to the App Registration. This process needs at least the
"Application Administrator" role.

Then you can use the same header as for the Graph API as documented here: Create access token

| LNC Docs (lucanoahcaprez.ch)

Get Webhook data from request body

To get the data of the requests body you first have to define a new parameter at the beginning of
the Runbook script. Below you can filter out the body from the request and convert it from JSON to
a PowerShell object. This can then be stored in normal variables or simply used for the further
course of the script.

Param(
[parameter (Mandatory=$false)]
[object]$WebhookData

)

$WebhookBody = $WebHookData.RequestBody

$InputData = (ConvertFrom-Json -InputObject $WebhookBody)

$LanguageCode = $InputData.LanguageCode

$DomainName = $InputData.DomainName

Create Runbook Job via PowerShell

To create a Runbook Job you have to first use the Webhook feature. Then for getting the Jobs
output, you have to wait until the Runbook is with the state "Succeeded".

Create Runbook Job
$webhookurl = "<yourwebhookurl|>"
$Body = @"
{
"email":"$Email"
}
'@
$Jobld = Invoke-RestMethod -Method POST -Uri $webhookurl -Body $Body
$Jobld = $Jobld.Joblds

https://docs.lucanoahcaprez.ch/books/microsoft-graph-api/page/create-application-access-token-authorization-header
https://docs.lucanoahcaprez.ch/books/microsoft-graph-api/page/create-application-access-token-authorization-header

Create loop from csv content

With the following script you can loop over content inside a csv and create a new Runbook job for
every entry.

$Imports = Import-Csv -Path "<pathtocsv>" -Delimiter ";"

$webhookurl = "<yourwebhookurl|>"

foreach($Import in $Imports){
Create Runbook Job
$Body = @"
{
"languagecode":"$($Import.LanguageCode)",
"domainname":"$($Import.DomainName)",
}
'@

Invoke-RestMethod -Method POST -Uri $webhookurl -Body $Body

Get Runbook job output via
PowerShell

Here you can get the Runbook job output by a job id:

$subscriptionid = "<yoursubscriptionid>"
$resourcegroupname = "<yourresourcegroupname>"

$automationaccountname = "<yourautomationaccountname>"
$Jobld = "<yourrunbookjobid>"
$whilecounter = 1

Get Runbook job output

$url =
"https://management.azure.com/subscriptions/$Subscriptionid/resourceGroups/$resourcegroupname/providers/
Microsoft.Automation/automationAccounts/$automationaccountname/jobs/$Jobld/?api-version=2019-06-01"

$Response = Invoke-Restmethod -uri $url -Method GET -Headers $Headers

print out current state of Runbook Job
$response.properties.provisioningstate
while($response.properties.provisioningstate -ne "Succeeded"){
Start-Sleep 15
$Response = Invoke-Restmethod -uri $url -Method GET -Headers $Headers
$response.properties.provisioningstate
if($whilecounter -le 10){
$whilecounter ++
}
else{
Write-Error "Get job output from Runbook failed. Exiting Script."
Exit 1

$RunbookjobOutput = Invoke-Restmethod -uri $url -Method GET -Headers $Headers

