
Azure Log
Analytics

KQL quick commands
Write custom logs via PowerShell
Query Azure Firewall Logs
Create Workbooks with KQL queries
Use of variables & dynamic content in Azure Workbooks
Create log health dashboard using time based data

KQL quick commands
Count entries in table

Get log storage usage

<loganalyticstablename> | summarize count()

Usage | where IsBillable | summarize DataGB = sum(Quantity / 1000)

Write custom logs via
PowerShell
With Log Analytics you can write custom logs. For this the API can be used to write new logs to the
Log Analytics Workspace. The whole API is documented here: https://learn.microsoft.com/en-
us/rest/api/loganalytics/create-request

Script template
This script template uses the first three variables. The first two can be found under "Agents
management" -> "Log Analytics agent instructions".

The third variable "LogType" defines the type of log you are going to send. This can be the same as
existing log entries or a completly new one. This type of log defines if a new table or an existing
table is created or used to store the logs.

$customerId = ""
$sharedKey = ""
$LogType = ""

Function Build-Signature ($customerId, $sharedKey, $date, $contentLength, $method, $contentType,

https://learn.microsoft.com/en-us/rest/api/loganalytics/create-request
https://learn.microsoft.com/en-us/rest/api/loganalytics/create-request
https://docs.lucanoahcaprez.ch/uploads/images/gallery/2022-12/qFsimage.png

$resource){
 $xHeaders = "x-ms-date:" + $date
 $stringToHash = $method + "`n" + $contentLength + "`n" + $contentType + "`n" + $xHeaders + "`n" +
$resource

 $bytesToHash = [Text.Encoding]::UTF8.GetBytes($stringToHash)
 $keyBytes = [Convert]::FromBase64String($sharedKey)

 $sha256 = New-Object System.Security.Cryptography.HMACSHA256
 $sha256.Key = $keyBytes
 $calculatedHash = $sha256.ComputeHash($bytesToHash)
 $encodedHash = [Convert]::ToBase64String($calculatedHash)
 $authorization = 'SharedKey {0}:{1}' -f $customerId,$encodedHash
 return $authorization
}

Function Post-LogAnalyticsData ($customerId, $sharedKey, $body, $logType){
 $method = "POST"
 $contentType = "application/json"
 $resource = "/api/logs"
 $rfc1123date = ([DateTime]::UtcNow).ToString("r")
 $contentLength = $body.Length
 $signature = Build-Signature -customerId $customerId -sharedKey $sharedKey -date $rfc1123date -
contentLength $contentLength -method $method -contentType $contentType -resource $resource

 $uri = "https://" + $customerId + ".ods.opinsights.azure.com" + $resource + "?api-version=2016-04-01"

 $headers = @{
 "Authorization" = $signature;
 "Log-Type" = $logType;
 "x-ms-date" = $rfc1123date;
 }

 $response = Invoke-WebRequest -Uri $uri -Method $method -ContentType $contentType -Headers $headers -
Body $body -UseBasicParsing
 return $response.StatusCode
}

$Properties = [Ordered] @{
 "ComputerName" = $env:computername

The variable "LogResponse" is in a successful execution filled with the value 200.

Use Case
A possible use case is for example is to write an Azure Function to provide a custom Rest API to
write logs to a function. This has multiple advantages over writing directly to the Log Analytics
Workspace. Everything from less code to credential leaks will be provided with a simple REST Call
to the Azure Function. More on this in the chapter "Azure Function".

 "User" = $env:Username
}

$CustomLogs = New-Object -TypeName "PSObject" -Property $Properties | ConvertTo-JSON -Depth 10

#Submit the data to the API endpoint
$params = @{
 CustomerId = $customerId
 SharedKey = $sharedKey
 Body = ([System.Text.Encoding]::UTF8.GetBytes($CustomLogs))
 LogType = $LogType
}
$LogResponse = Post-LogAnalyticsData @params
$LogResponse

Query Azure Firewall
Logs
Azure Firewall Logs can be stored in an Azure Log Analytics Workspace. This workspace then
contains all status logs along with permitted and denied connections. So, to find out if a connection
is wrongly blocked or to make a specific firewall request, we can use these logs to give us insights.

Find log tables
First of all you have to select the scope on which you want to search for the logs. You can choose
the Log Analytics scope with "Select scope".

Azure Firewalls save logs to different tables. To find all the different log table you can search in the
tables pane for "AZFW". These Tables contain the corresponding log data.

https://docs.lucanoahcaprez.ch/uploads/images/gallery/2022-12/XmWimage.png

Azure Firewall rule logs are stored within the "AZFWNetworkRule" table.

View whole table content
To view the whole table content you can write the name of the table into the KQL (Kusto Query
Language) section. In this case "AZFWNetworkRule" is enough to see all the permitted and denied
connections.

Filter logs after IP address
Most of the time we want to filter for specific addresses. These Firwall logs can be queried with the
powerful KQL language. This language helps to explore data and discover patterns, identify
anomalies and outliers, create statistical modeling, and more. The query uses schema entities that
are organized in a hierarchy similar to SQL's: databases, tables, and columns.

Filter for source IPs
AZFWNetworkRule
| where SourceIp == "<yoursourceipadress>"

Filter for destination IPs
AZFWNetworkRule
| where DestinationIp == "<yourdestinationipadress>"

https://docs.lucanoahcaprez.ch/uploads/images/gallery/2022-12/QWMimage.png

Create Workbooks with
KQL queries
Introduction
In today's data-driven world, Azure provides a wealth of data waiting to be analyzed. Azure Log
Analytics, powered by Kusto Query Language (KQL), enables users to explore and visualize data
effectively. Let's dive into how to leverage KQL-Based Workbooks in Azure Log Analytics to gain
valuable insights through compelling graphs and diagrams.

Implementing KQL-Based Workbooks
1. Setting Up Azure Log Analytics: Ensure you have an active Azure subscription and

access to Azure Log Analytics. Create a Log Analytics workspace from the Azure portal
and connect your data sources, such as Azure Monitor, Application Insights, or custom
logs.

2. Creating a Workbook: Navigate to your Log Analytics workspace in the Azure portal,
select "Workbooks" from the left-hand menu, and create a new workbook. You can also
choose from existing templates to accelerate your analysis.

3. Writing KQL Queries: In the workbook, use Kusto Query Language (KQL) to craft queries
that retrieve data from your Log Analytics workspace. KQL allows you to filter, aggregate,
and transform data efficiently.

4. Visualization with Graphs: After querying the data, enhance your insights by creating
visualizations with graphs. Choose from various graph types such as line charts, bar
charts, pie charts, or area charts, depending on the data and the story you want to
convey.

5. Diagram Visualization: Apart from traditional graphs, KQL-Based Workbooks enable you
to create dynamic and interactive diagrams. Utilize diagrams like topology maps, network
diagrams, or flowcharts to depict the relationships and dependencies within your data.

6. Interactive Controls: Enhance user experience by adding interactive controls like drop-
down menus, time range selectors, or variable inputs. These controls allow users to
customize and explore data on their terms.

7. Sharing and Collaboration: Share your workbook with relevant stakeholders,
empowering them to view and interact with the data-driven insights. Collaborate with
teams by granting them access to workbooks or exporting them for offline review.

8. Automate with Scheduled Queries: Automate data analysis by scheduling queries to
run at regular intervals. This ensures that your workbooks stay up-to-date with the latest

data without manual intervention.

Use of variables &
dynamic content in Azure
Workbooks
Within large Azure workbooks (dashboards), we want to be dynamic and allow users to specify their
own parameters. This enables a more precise evaluation based on e.g. time period, resources and
much more.

Create Azure Workbook
Search in Azure Portal for "Azure Workbooks" and create a new Workbook. It is recommended to
save the workbook beforehand. For this step click on the save icon and set the name you want.
Then choose the subscription and resource group parameters. in the end you have to specify a
location.

Create first data visualization
Inside the newly created we can start the first query. Click "Add" and choose "Add query".

https://docs.lucanoahcaprez.ch/uploads/images/gallery/2023-12/zc9image.png

Inside this query you have to specify the workspace as this is the source for the queries (your log
analytics workspace or storage account of choice). Set the parameter "Time Range" to the value
"Set in query" thus we will set this dynamically using Workbook parameters.

Write your log query in KQL so that the output meets your expectations. AI Chatbots can be a big
help for writing queries.

Add dynamic parameters
To display charts and tables based on the parameters we set, we can use the so-called "Parameter"
functionality of Azure Workbooks.

First we have to create a parameter set. Click "Add" and choose "Add parameters":

Click "Add Parameter":

https://docs.lucanoahcaprez.ch/uploads/images/gallery/2023-12/Lqkimage.png
https://docs.lucanoahcaprez.ch/uploads/images/gallery/2023-12/8Ifimage.png
https://docs.lucanoahcaprez.ch/uploads/images/gallery/2023-12/H7Rimage.png

Fill out the form based on your needs:

Use of dynamic parameters
After we have created a dynamic parameter, we can use the values inside our KQL queries. The
use is different based on the selected data type of the parameter.

Using the "Previews" pane on the editing page of the parameter we can select values and see their
according value.

https://docs.lucanoahcaprez.ch/uploads/images/gallery/2023-12/xmWimage.png
https://docs.lucanoahcaprez.ch/uploads/images/gallery/2023-12/9Jpimage.png

So we can work with these variables inside our queries and update our query from before. This
enables us to display the events based on the selected value of the parameter:

This will replace {TimeRange:value} with the value "ago(24h)" when the selection is the following:

let start_time = {TimeRange:value};
let end_time = now();
let time_range = start_time - end_time;
<YOURTABLENAME>
| where State_s == "SUCCESS"

https://docs.lucanoahcaprez.ch/uploads/images/gallery/2023-12/rn2image.png
https://docs.lucanoahcaprez.ch/uploads/images/gallery/2023-12/wroimage.png

Create log health
dashboard using time
based data
This article is about how to create a dashboard using log data. We want to analyze relevant time-
sensitive data in a dynamic and visually meaningful way.

Use case
An example application is when an application or script feeds data from various endpoints or
microservices via a central logging solution and this data is then to be visualized. You can find
more information about a simple and scalable solution for central log management here: Centralize
log collect... | LNC DOCS (lucanoahcaprez.ch)

This example graph displays values of a PowerShell script that runs at the log in of a user. The
script then has statuses, which are then written to an Azure Log Analytics Workspace. This diagram
can now be used to see at what time which status was created.

https://docs.lucanoahcaprez.ch/books/azure-functions/page/centralize-log-collection-with-a-custom-rest-api
https://docs.lucanoahcaprez.ch/books/azure-functions/page/centralize-log-collection-with-a-custom-rest-api
https://docs.lucanoahcaprez.ch/uploads/images/gallery/2023-12/image.png

Behind this view there is the following KQL query:

This query uses the value of the variable "{TimeRange:start}" for dynamic change based on the
selection. More on this dynamic strategy is described here: Use of variables & dyn... | LNC DOCS
(lucanoahcaprez.ch)

let start_time = {TimeRange:start};
let end_time = now();
let time_range = start_time - end_time;
<yourlogtable>
| where TimeGenerated >= start_time and TimeGenerated <= end_time
| make-series count() default=0 on TimeGenerated from start_time to end_time step 1h by State_s
| render timechart

https://docs.lucanoahcaprez.ch/books/azure-log-analytics/page/use-of-variables-dynamic-content-in-azure-workbooks
https://docs.lucanoahcaprez.ch/books/azure-log-analytics/page/use-of-variables-dynamic-content-in-azure-workbooks

