
Azure Automation
Accounts

How to Runbook
Runbook concept with PowerShell
Create Runbook Job via Webhook and Azure Management API
Use System Managed Identity for authentication against Microsoft Graph API

How to Runbook
This guide is a quick manual for an Azure Runbook. Here is a brief description of the prerequisites
and definitions that must be met in order to create an automation via Azure Runbooks.

Prerequisites
Defined goal
A defined goal is necessary that we can check if our end product is doing what we are expecting.
This can be as simple as one phrase.

Example:

My Azure Runbook should start by a manual trigger and create a new enrollment service profile via
Graph API in Intune. As a result, it should return a success-code and the name and id of the new
enrollment service profile.

Defined input
To know how to start the code, we first need to define the input(s) we need to get with the trigger
to reach our goal. This must be a static text input.

Example:

Variable 1: $ServiceProfileName = <textinput>
Variable 2: $GroupId = <idinput>
Variable 3: $CompanyName = <companyname>

Defined output
The output should include the name and the id of the created enrollment service profile and if the
script was run successful.

Example:

ESP-WIN-LNC-DEVICE-CompanyEnrollment-PROD // 396e26cb-d657-4a4e-8beb-105ba1984c63

Script finished successfully

Trigger method
The method is important that we know what oder which object(s) are triggering this runbook. This
could be a manual user via the Azure Portal or via the Azure Management API. Furthermore, it
could be a third-party system, like ServiceNow or a schedule.

Example:

This Azure Runbook should get triggered manually via the Azure Portal.

Logic model
The logic model defines the logic of the code in a very high-level draft.

Example:

1. Get Input
2. Check input values
3. Create JSON body for Graph API
4. Post JSON body to Graph API
5. Get response from Graph API
6. Write response in output

Decisions
Coding language
Azure Runbooks can execute different code with different languages. This is defined per Azure
Runbook. To change the Runbooks coding language, you can create a new Runbook in the
Automation Account. Azure Runbooks offers these languages for code execution:

PowerShell
Python

Runtime
On which environment should the Runbook run on? You can choose between Azure managed hosts
or hybrid worker. Hybrid worker brings the advantage that you can connect to on premise
resources and bypass some restrictions which can occur if Azure is selected as runtime.

Procedure
Create Automation Account

Automation Accounts are the container which contains all the information, secret, Runbook and
more. You can create one Automation Account for all your Runbooks. However, it is a good idea if
the automation accounts are subdivided according to the technologies that will be automated.

Create runbook
The runbook contains the code which will be executed. On creation you have to select which type it
should create. This is a selection of the mentioned coding languages.

Code
When created you can copy your code into the web editor of the Function or start to develop the
code directly in the Azure Portal.

Testing
For testing you don't have to leave the Azure Portal. While developing you are able to activate the
"Test pane". There you can enter the variables if parameters are defined on the top level in the
code.

param (
 [Parameter (Mandatory = $true)]

https://docs.lucanoahcaprez.ch/uploads/images/gallery/2022-12/w5Aimage.png
https://docs.lucanoahcaprez.ch/uploads/images/gallery/2022-12/qRpimage.png

This is the result view in the Azure Portal if parameters are defined in the code.

Deploy
To deploy the code you have to publish the code in the editor view.

After that you are able to start the Runbook via the normal Azure Runbook GUI. This will then use
the latest published version of the code.

Things to consider
Hybrid worker
To use a hybrid worker, you have to deploy an Azure VM, or an Azure Arc enabled VM which is
always online. This means that the costs are not very low to use on prem scripts via Azure
Runbooks.

Stacking of requests

 [object] $Email,
 [Parameter (Mandatory = $true)]
 [object] $deviceName
)

https://docs.lucanoahcaprez.ch/uploads/images/gallery/2022-12/SHximage.png
https://docs.lucanoahcaprez.ch/uploads/images/gallery/2022-12/6gQimage.png
https://docs.lucanoahcaprez.ch/uploads/images/gallery/2022-12/076image.png

Azure Runbook stacks the requests. So, if 100 requests are made, the code execution is
asynchronous and you have to wait until all jobs (requests) were processed.

Runbook concept with
PowerShell
Here I describe how to create automations using runbooks. The PowerShell scripts can either run in
the Azure environment or on the hybrid workers, which are joined in a domain and can thus access
internal resources. The file structure and all resources are displayed and edited via the Azure
portal.

Runbooks are executed asynchronously. This means that the first execution is completely finished
until the next request is processed (big difference to Azure Functions!). This also means that
several executions are stacked (queued) and only one execution is possible in parallel at a time.

Runbooks
In Azure Automation Accounts, runbooks are the PowerShell scripts that are executed regularly, on
user action or via third party applications. These are created in the corresponding automation
account according to the technology. These runbooks can then be equipped with other resources
such as schedules or credentials.

The runbooks should be named according to the abbreviation corresponding to the environment
(AD, MEID, CPC, MW, SPO, EXO, TEA, etc.) and the abbreviation "RB". In addition, a short name that
is as meaningful as possible should be used for the action of the script.
Example:

RB-EXO-PRD-PS1-CreateDomainByCompany-PROD-WE
RB-MEID-ALL-PS1-CleanUpMEIDDevices-PROD-WE

Automation Credentials
App Registrations and Service Accounts Credentials can be stored in the Automation Credentials.
These are to be stored according to the following concept. Usernames and passwords, but also
Secret ID and Client Secrets can be stored here. It is also important here that the corresponding
resource names (account name, app registration name) are contained one-to-one.
Example:

CRED-RB-PRD-CRED-CleanUpMEIDDevices-PROD-WE
CRED-RB-ALL-CRED-CleanUpMEIDDevices-PROD-WE

Access in the PowerShell script to the corresponding
variables

Certificates
The certificate storage of Azure Runbooks can be used so that authentication can also be
performed using certificates.
Example:

CERT-RB-PRD-CERT-CleanUpMEIDDevices-PROD-WE
CERT-RB-ALL-CERT-CleanUpMEIDDevices-PROD-WE

Variables
Under variables, contents and strings can be stored that simply have to be adapted or should not
be hardcoded in the script.
Example:

VAR-RB-PRD-CLIENTID-CleanUpMEIDDevices-PROD-WE
VAR-RB-ALL-CLIENTID-CleanUpMEIDDevices-PROD-WE

Access in the PowerShell script to the corresponding
variables

PowerShell Modules
In order to use PowerShell modules, they must first be added to the Azure Automation account.
This can be achieved in the Automation Account via "Modules" → "Add a Module" → "Browse from
Gallery".

Import module into PowerShell script

$CredentialObject=Get-AutomationPSCredential -Name 'CRED-RB-ALL-CRED-CleanUpMEIDDevices-PROD-WE'
$Password = $CredentialObject.GetNetworkcredential().password

$Username = $CredentialObject.GetNetworkcredential().username

$ClientId=Get-AutomationVariable -Name "VAR-RB-PRD-CLIENTID-CleanUpMEIDDevices-PROD-WE"

Schedules
The schedules are finally mapped to the runbook. These can be set granularly on a weekly, daily or
hourly basis. The following concept is also used in the schedule name. In addition to the action
name, the abbreviation "RB" for runbook is added here. In addition, there is one of the following
regularity descriptions:

Hourly
Daily
Weekly
Monthly
Yearly
12Hourly

Example:

SCED-RB-PRD-DAILY-CheckLicenseCount-PROD-WE
SCED-RB-PRD-WEEKLY-CleanUpMEIDDevices-PROD-WE

Triggers
Triggers mean types to call the Azure Runbooks and execute the code.

Manual
Azure Runbooks can be conveniently executed via the GUI. The required parameters can also be
entered in the GUI Form.

Import-Module AzureAD

Schedules
Schedules can be defined in the Automation Account. This allows scripts to be run on a regular
basis. These schedules can then be assigned to the runbooks. To remain transparent, only one
schedule per runbook and one runbook per schedule may be used.

PowerShell
A runbook can also be executed via PowerShell. However, a webhook must be created for this, via
which a runbook job can be created. Since runbooks do not automatically return the response and
can take several hours to execute, the PowerShell script must also wait for the output. Here we see
an example where a PowerShell script waits 165 seconds for the job output and terminates
otherwise.

Create AzRUN Job
$url = "<yourrunbookwebhookurl>"
$Body = @"
{
 "email":"$Email"
}
"@
$JobId = Invoke-RestMethod -Method POST -Uri $url -Body $Body
$JobId = $JobId.JobIds

$whilecounter = 1

https://docs.lucanoahcaprez.ch/uploads/images/gallery/2022-12/2LXimage.png

ServiceNow
ServiceNow has a spoke for interaction with Azure Automation accounts and can use it to execute
runbooks and read out their feedback. SNOW receives authorisation for access via a service
account. This account must be able to read all resource groups on the subscription and have the
rights to execute runbooks on the automation account.

Authentication to Azure Automation Account
Authentication to the Azure Automation Account happens in exactly the same way in the frontend
as well as via code. Here, the app registration must have the permission "user_impersonation" on
the Azure API. Then all requests go via the API https://management.azure.com. Accordingly, the
app registration must also be authorised in the IAM of the Azure Automation Account by means of
Managed Identity.

Get AzRUN Job Output
$url =
"https://management.azure.com/subscriptions/<subscriptionid>/resourceGroups/<resourcegroupname>/provide
rs/Microsoft.Automation/automationAccounts/<automationaccountname>>/jobs/$JobId/?api-version=2019-06-
01"
$Response = Invoke-Restmethod -uri $url -Method GET -Headers $Headers
$response.properties.provisioningstate
while($response.properties.provisioningstate -ne "Succeeded"){
 Start-Sleep 15
 $Response = Invoke-Restmethod -uri $url -Method GET -Headers $Headers
 $response.properties.provisioningstate
 if($whilecounter -le 10){
 $whilecounter ++
 }
 else{
 Write-Error "Get JobOutput from Runbook failed. Exiting Script."
 Exit 1
 }
}

$outputurl =
"https://management.azure.com/subscriptions/<subscriptionid>/resourceGroups/<resourcegroupname>/provide
rs/Microsoft.Automation/automationAccounts/<automationaccountname>>/jobs/$JobId/output?api-
version=2019-06-01"
$Language = Invoke-Restmethod -uri $outputurl -Method GET -Headers $Headers

Create Runbook Job via
Webhook and Azure
Management API
To create a Runbook Job you can use the Azure Management API in combination with the webhook
feature from Azure Runbooks. This makes sure that you can execute a script with given parameters
in a safe location (credential handling, reliability, on premise access and more).

Use case
To use the runbook to execute PowerShell code on a backend, you can create a Job from the client
code with corresponding input values. Even if you want to get some information back from the
Runbook, you can wait on the client side code for the response of the Runbook Job.

Example: Based on a UPN of a logged in user the language of his device should be set. In order to
match the UPN in the database and get a predefined language, an Azure Runbook should be called
by the client and return the language. This ensures that the credentials and network access to the
database are stored securely.

Create webhook URL
To create a webhook you have to open the Runbook and go to "Webhooks":

There you can create a new webhook and enter the name of the webhook, expiration date and you
can view the URL. In addition, you can specify here where the runbook should be executed,
whether in Azure itself or on a Hybrid Worker.

Attention: The URL is shown only once and should therefore be copied out.

Authentication to Azure Management
API
The authorization against the Azure Management API can be solved via an app registration. For this
you have to create an App Registration with the following permission:

Delegated: user_impersonation

This permission can be added through the "Azure Service Management":

https://docs.lucanoahcaprez.ch/uploads/images/gallery/2022-12/psaimage.png
https://docs.lucanoahcaprez.ch/uploads/images/gallery/2022-12/Md6image.png
https://docs.lucanoahcaprez.ch/uploads/images/gallery/2022-12/R7Kimage.png

After that you have to use the access control blade of your Automation Account. There you have to
grant the "Automation Job Operator" role to the App Registration. This process needs at least the
"Application Administrator" role.

Then you can use the same header as for the Graph API as documented here: Create access token
| LNC Docs (lucanoahcaprez.ch)

Get Webhook data from request body
To get the data of the requests body you first have to define a new parameter at the beginning of
the Runbook script. Below you can filter out the body from the request and convert it from JSON to
a PowerShell object. This can then be stored in normal variables or simply used for the further
course of the script.

Create Runbook Job via PowerShell
To create a Runbook Job you have to first use the Webhook feature. Then for getting the Jobs
output, you have to wait until the Runbook is with the state "Succeeded".

Param(
 [parameter (Mandatory=$false)]
 [object]$WebhookData
)
$WebhookBody = $WebHookData.RequestBody
$InputData = (ConvertFrom-Json -InputObject $WebhookBody)

$LanguageCode = $InputData.LanguageCode
$DomainName = $InputData.DomainName

Create Runbook Job
$webhookurl = "<yourwebhookurl>"
$Body = @"
{
 "email":"$Email"
}
"@
$JobId = Invoke-RestMethod -Method POST -Uri $webhookurl -Body $Body
$JobId = $JobId.JobIds

https://docs.lucanoahcaprez.ch/books/microsoft-graph-api/page/create-application-access-token-authorization-header
https://docs.lucanoahcaprez.ch/books/microsoft-graph-api/page/create-application-access-token-authorization-header

Create loop from csv content
With the following script you can loop over content inside a csv and create a new Runbook job for
every entry.

Get Runbook job output via
PowerShell
Here you can get the Runbook job output by a job id:

$Imports = Import-Csv -Path "<pathtocsv>" -Delimiter ";"
$webhookurl = "<yourwebhookurl>"

foreach($Import in $Imports){
 # Create Runbook Job
 $Body = @"
 {
 "languagecode":"$($Import.LanguageCode)",
 "domainname":"$($Import.DomainName)",
 }
"@

 Invoke-RestMethod -Method POST -Uri $webhookurl -Body $Body
}

$subscriptionid = "<yoursubscriptionid>"
$resourcegroupname = "<yourresourcegroupname>"
$automationaccountname = "<yourautomationaccountname>"

$JobId = "<yourrunbookjobid>"

$whilecounter = 1

Get Runbook job output
$url =
"https://management.azure.com/subscriptions/$Subscriptionid/resourceGroups/$resourcegroupname/providers/
Microsoft.Automation/automationAccounts/$automationaccountname/jobs/$JobId/?api-version=2019-06-01"
$Response = Invoke-Restmethod -uri $url -Method GET -Headers $Headers

print out current state of Runbook Job
$response.properties.provisioningstate
while($response.properties.provisioningstate -ne "Succeeded"){
 Start-Sleep 15
 $Response = Invoke-Restmethod -uri $url -Method GET -Headers $Headers
 $response.properties.provisioningstate
 if($whilecounter -le 10){
 $whilecounter ++
 }
 else{
 Write-Error "Get job output from Runbook failed. Exiting Script."
 Exit 1
 }
}

$RunbookJobOutput = Invoke-Restmethod -uri $url -Method GET -Headers $Headers

Use System Managed
Identity for
authentication against
Microsoft Graph API

Managing authentication securely in Azure can be challenging, but leveraging System-Managed
Identities simplifies access management while enhancing security. This guide walks you through
the process of using a System-Managed Identity within an Azure Automation Account to
authenticate against Microsoft Graph API.

Known limitations
If you use PowerShell 7.2 in your Runbook you must use the older Module Version 2.25.0
of PowerShell Module Microsoft.Graph.Authentication. More details on the problem:

Newer PowerShell Modules > 2.25.0 have dependency on dotnet 8.0. PowerShell 7.2
uses dotnet 6.0.
PowerShell 7.4 (which has dotnet 8.0) is still not available in Azure Automation
Accounts.
Tracking of Issue on GitHub (Source of information): Associated GitHub Issue.
Workaround: Create your Runbooks inside Runtime Environments with PowerShell
7.4.

Assignment of Graph API permissions via the GUI to System Managed Identities is
currently not supported. Only assignments via PowerShell is available.

System Managed Identities

Prerequisites: You must have Application Administrator role in Microsoft Entra ID (Bearer
token must contain scope Applications.ReadWrite.All). Automation Account must be
available. You have to be permitted to activate the System Managed Identity.

https://www.powershellgallery.com/packages/Microsoft.Graph.Authentication/
https://github.com/microsoftgraph/msgraph-sdk-powershell/issues/3151

First you need to decide if System Managed Identities are suitable for your needs. There are also
User Managed Identities which serve a more dynamic approach (In short: Lifecycle of Identity
object is not tied to the Azure Resource). Here you can see a comparison of the two options and
some more explanation: Best practice recommendations for managed system identities - Managed
identities for Azure resources | Microsoft Learn

If you want to have a deep understanding of the Service Principal architecture behind it, watch this
deep dive session: Microsoft Azure Managed Identity Deep Dive - YouTube

Enable Identity on Azure Automation Account
First open Azure Automation Account in Azure Portal (List all accounts: Automation Accounts -
Microsoft Azure). Open the one you want to activate the managed identity.

Switch to tab "Identity" on the Automation Account page.

Switch Status to "On" and click "Save".

Verify System Managed Identity in Microsoft Entra
ID
To verify if the System Managed Identity is successfully deployed, you can verify if the Service
Principal of the Azure Resource is deployed correctly. Copy the Object ID of the created Service
Principal (in view of screenshot above). Afterwards, open Microsoft Entra admin center and

https://learn.microsoft.com/en-us/entra/identity/managed-identities-azure-resources/managed-identity-best-practice-recommendations
https://learn.microsoft.com/en-us/entra/identity/managed-identities-azure-resources/managed-identity-best-practice-recommendations
https://www.youtube.com/watch?v=rC1TV0_sIrM
https://portal.azure.com/#browse/Microsoft.Automation%2FAutomationAccounts
https://portal.azure.com/#browse/Microsoft.Automation%2FAutomationAccounts
https://docs.lucanoahcaprez.ch/uploads/images/gallery/2025-03/image.png
https://docs.lucanoahcaprez.ch/uploads/images/gallery/2025-03/SOBimage.png

navigate to Enterprise Application (or use the direct link: Enterprise applications - Microsoft Entra
admin center).

Search the Object ID of the Service Principal or search for
the name of the Azure Resource. If found, click on the
appropriate resource.

If the Service Principal is not yet displayed, wait a
few minutes and try to refresh the view a bunch of
times.

Scroll down in the menu and switch to the "Permissions"
tab. Here are all Graph API permissions displayed. System
Managed Identities only support permissions in "Admin
consent" / Application context (no delegated permissions
supported as there are no sign interactive sign ins by user
objects).

Here you can review the permissions of the Managed
Identity. If previously created, this list will be empty by
default.
Go to next chapter to assign Graph API permissions.

Assign Graph API Permissions
Unfortunately the assignment of permissions to the System Managed Identity is not available via
the Entra admin center. Therefore we have to use a PowerShell script to leverage the Graph API to
assign the desired permissions.

You can save this script to your drive and then run it via ".\<yourscriptfilename>.ps1" or
copy/paste the desired code blocks into a terminal. If you want to grant specific permissions to the
Service Principal, you can adjust the list in $GrantGraphPermissions.

https://entra.microsoft.com/#view/Microsoft_AAD_IAM/StartboardApplicationsMenuBlade/~/AppAppsPreview
https://entra.microsoft.com/#view/Microsoft_AAD_IAM/StartboardApplicationsMenuBlade/~/AppAppsPreview
https://docs.lucanoahcaprez.ch/uploads/images/gallery/2025-03/YlUimage.png
https://docs.lucanoahcaprez.ch/uploads/images/gallery/2025-03/q7Kimage.png
https://docs.lucanoahcaprez.ch/uploads/images/gallery/2025-03/YBqimage.png

[CmdletBinding()]
param (
 [Parameter(Mandatory = $true)]
 [string]$AutomationAccountName,
 [Parameter(Mandatory = $true)]
 [string]$TenantID,
 [Parameter(Mandatory = $true)]
 [string]$SubscriptionID
)

Import-Module Microsoft.Graph.Authentication
Import-Module Az.Resources
Import-Module Az.Accounts

$GRAPH_APP_ID = "00000003-0000-0000-c000-000000000000"
$GrantGraphPermissions = @(
 "User.ReadBasic.All",
 "<addotherpermissions>"
)

$EntraIDRequiredPermissions = @(
 "AppRoleAssignment.ReadWrite.All",
 "Application.ReadWrite.All"
)

Update-AzConfig -EnableLoginByWam $false
Connect-AzAccount -TenantId $TenantID -Subscription $SubscriptionID
Connect-MgGraph -Scopes $($EntraIDRequiredPermissions -join ', ') -NoWelcome -ErrorAction Stop

Get-AzContext | Format-List
Get-MgContext | Format-List

$AutomationMSI = (Get-AzADServicePrincipal -Filter "displayName eq '$AutomationAccountName'")
Write-Host "Assigning permissions to $AutomationAccountName ($($AutomationMSI.Id))"

$GraphServicePrincipal = Get-AzADServicePrincipal -Filter "appId eq '$GRAPH_APP_ID'"
$GraphAppRoles = $GraphServicePrincipal.AppRole | Where-Object { $_.Value -in $GrantGraphPermissions -and
$_.AllowedMemberType -contains "Application" }

Add Graph Module to Automation
Account
Open the Azure Portal and navigate to your Automation Account (List all accounts: Automation
Accounts - Microsoft Azure).

PowerShell 7.4

If you are already working with Runtime Environments on your Automation Account you can simply
import the PowerShell module "Microsoft.Graph.Authentication" from PowerShellGallery and let it
update automatically. Since PowerShell 7.4 is based on dotnet 8.0, the module version must be at
least 2.26.0.

PowerShell 7.2

if ($GraphAppRoles.Count -ne $GrantGraphPermissions.Count) {
 Write-Warning "App roles found: $($GraphAppRoles)"
 throw "Some App Roles are not found on Graph API service principal"
}

foreach ($AppRole in $GraphAppRoles) {
 Write-Host "Assigning $($AppRole.Value) to $($AutomationMSI.DisplayName)"
 New-MgServicePrincipalAppRoleAssignment -ServicePrincipalId $AutomationMSI.Id -PrincipalId
$AutomationMSI.Id -ResourceId $GraphServicePrincipal.Id -AppRoleId $AppRole.Id | Out-Null
}

PowerShell 7.4 requires a Runtime Environment in your Automation Account. Here is a guide
on how to migrate to Runtime Environments: Azure Automation Runtime Environments
Preview - Icewolf Blog

This is a workaround for Powershell Module "Microsoft.Graph.Authentication" for PowerShell
7.2 in version 2.25.0.

https://portal.azure.com/#browse/Microsoft.Automation%2FAutomationAccounts
https://portal.azure.com/#browse/Microsoft.Automation%2FAutomationAccounts
https://blog.icewolf.ch/archive/2024/12/31/azure-automation-runtime-environments-preview/
https://blog.icewolf.ch/archive/2024/12/31/azure-automation-runtime-environments-preview/

Open PowerShell 7 on your Mac or Windows Device. Run
this command to export the Module to a file:

Save-Module -Name Microsoft.Graph.Authentication
-Path .\ -Repository PSGallery -MaximumVersion
2.25.0

Compress the created folder to a zip archive.

Switch to tab "Module" on the Automation Account page
and click "Add a module".

Choose "Browse for file" and select the file you have
created earlier. Select a name and a runtime version
(Powershell 7.2) and klick on "Import".

Use System Managed Identity with
Graph module
After the permissions are set you have to create a Runbook. Inside the Runbook you can develop
some PowerShell code. Use the following snipped to authenticate against the Graph API using the
Microsoft.Graph.Authentication PowerShell module. The Connect-MgGraph method uses the System
Managed Identity with -Identity parameter. If no Client ID is specified, it will always try to use the
System Managed Identity for authentication. If you want to use User Assigned Managed Identity,

https://docs.lucanoahcaprez.ch/uploads/images/gallery/2025-03/mPvimage.png
https://docs.lucanoahcaprez.ch/uploads/images/gallery/2025-03/ukBimage.png
https://docs.lucanoahcaprez.ch/uploads/images/gallery/2025-03/vGNimage.png
https://docs.lucanoahcaprez.ch/uploads/images/gallery/2025-03/05Wimage.png

use -ClientID parameter.

Connect using the Managed Identity
Connect-MgGraph -Identity -NoWelcome
Get the current MgGraph context
Get-MgContext

